Levels and Patterns of Nucleotide Variation in Domestication QTL Regions on Rice Chromosome 3 Suggest Lineage-Specific Selection
نویسندگان
چکیده
Oryza sativa or Asian cultivated rice is one of the major cereal grass species domesticated for human food use during the Neolithic. Domestication of this species from the wild grass Oryza rufipogon was accompanied by changes in several traits, including seed shattering, percent seed set, tillering, grain weight, and flowering time. Quantitative trait locus (QTL) mapping has identified three genomic regions in chromosome 3 that appear to be associated with these traits. We would like to study whether these regions show signatures of selection and whether the same genetic basis underlies the domestication of different rice varieties. Fragments of 88 genes spanning these three genomic regions were sequenced from multiple accessions of two major varietal groups in O. sativa--indica and tropical japonica--as well as the ancestral wild rice species O. rufipogon. In tropical japonica, the levels of nucleotide variation in these three QTL regions are significantly lower compared to genome-wide levels, and coalescent simulations based on a complex demographic model of rice domestication indicate that these patterns are consistent with selection. In contrast, there is no significant reduction in nucleotide diversity in the homologous regions in indica rice. These results suggest that there are differences in the genetic and selective basis for domestication between these two Asian rice varietal groups.
منابع مشابه
Natural selection in gene-dense regions shapes the genomic pattern of polymorphism in wild and domesticated rice.
Levels of nucleotide variability are frequently positively correlated with recombination rate and negatively associated with gene density due to the effects of selection on linked variation. These relationships are determined by properties that frequently differ among species, including the mating system, and aspects of genome organization such as how genes are distributed along chromosomes. In...
متن کاملIdentification and Mapping of Quantitative Trait Loci Associated with Salinity Tolerance in Rice (Oryza Sativa) Using SSR Markers
Salinity stress is one of the most widespread soil problems next to drought, in rice growing areas. ReducingSodium (Na+), while maintaining Potassium (K+) uptake in rice are traits that would aid in salinity tolerance.Therefore, the identification of quantitative trait loci (QTLs) associated with those for Na+ and K+uptake, will enable breeders to use marker-assisted selection...
متن کاملMapping of seed shattering loci provides insights into origin of weedy rice and rice domestication.
Seed shattering is an important trait that distinguishes crop cultivars from the wild and weedy species. The genetics of seed shattering was investigated in this study to provide insights into rice domestication and the evolution of weedy rice. Quantitative trait locus (QTL) analysis, conducted in 2 recombinant inbred populations involving 2 rice cultivars and a weedy rice accession of the sout...
متن کاملنقشه یابی QTLهای متحمل به شوری در نتاج حاصل از تلاقی ارقام گاسپارد و خارچیا در گندم نان
For QTL mapping of related salt tolerance QTLs and determining the contribution of each QTL to phenotypic variation, a population consisting of 96 F2:3 families derived from the cross Kharchia (parent tolerant) and Gaspard (susceptible parent) were evaluated during 2 years. Of the 92 microsatellite markers used to evaluate parents, 32 markers were polymorphic which were used for analysis. Three...
متن کاملمکان یابی QTL های برخی صفات مرتبط با تحمل به خشکی در برنج
Identification of markers linked to genes controlling drought tolerance is necessary to breed high-yielding rice varieties for drought-prone areas. In the current study, some traits associated with drought tolerance in rice were investigated using microsatellite marker. One hundred and ninety two individuals and families derived from a cross between two genetically divergent, Shahpasand (tolera...
متن کامل